





AT THE FOREFRONT OF MEDICINE®

# **COMMON UPPER EXTREMITY FRACTURES**

Jovy G. Angeles, M.D. Assistant Professor Upper Extremity & Microvascular Surgery Department of Orthopaedic Surgery & Rehabilitation Medicine 12 August 2016



- I have received financial support for education from
  Trimed
- I will not discuss off label drug use nor investigational use in my presentation



At the end of this session, participants will

- 1. Be familiar with the most common patterns and clinical presentation of upper extremity fractures
- 2. Know the typical physical exam findings of common UE fracture
- 3. Know the appropriate radiographic and imaging studies for diagnosing common UE fractures
- 4. Know when surgical or non-surgical treatment is appropriate for a given UE fracture



- Clavicle
- Shoulder Dislocation
- Humerus
- Elbow
- Forearm
- Distal Radius
- Scaphoid



# **Clavicle Fractures**

- Epidemiology
  - 2.6% 12% of all fractures
  - 44% 66% of fractures about the shoulder
  - 80% occur at middle 3<sup>rd</sup> of clavicle
- Anatomy
  - Ossifies at 5<sup>th</sup> wk gestation, last to fuse at 22 25 years
  - Middle 3<sup>rd</sup> is transition area→vulnerable to fracture
  - Medial 3<sup>rd</sup> protects neurovascular structures and lung
  - Distal 3<sup>rd</sup> have attachments to the coracoclavicular ligaments





- Mechanism
  - Fall onto shoulder (87%)
  - Direct blow (7%)
  - Fall onto outstretched hand (6%)
- Trimodal distribution





#### THE UNIVERSITY OF CHICAGO MEDICINE

# **Clavicle Fractures**

- Clinical Evaluation
  - Inspect and palpate for deformity/abnormal motion
  - Thorough neurovascular exam
  - Auscultate the chest for signs of lung injury/pneumothorax
- Radiographic Exam
  - AP chest radiographs.
  - Clavicular 45deg A/P oblique view
  - Traction views may be used as well







- Classification of Clavicle Fractures
  - Type I: Middle Third (80%)
  - Type II: Distal Third (15%)
  - Type III: Medial Third (5%)



# **Clavicle Fracture**

- Associated Injuries
  - Up to 9% of patients
  - Brachial Plexus Injuries
    » Traction more common
    - » penetrating (rare)
  - Vascular Injury
  - Rib Fractures
  - Scapula Fractures
  - Pneumothorax





- Closed Treatment
  - Sling immobilization for usually 3-4 weeks with early ROM encouraged









# **Clavicle Fracture**

Operative intervention

Fractures with neurovascular injury Fractures with severe associated chest injuries Open fractures Group II, type II fractures Nonunion

Operative treatment Outcomes

Altamini, et al (J Bone Joint Surg-Am, 2008)

Multicenter, prospective RCT comparing ORIF (67 px) vs. non-surgical tx (65 px) Operative group had

Faster union Less malunion Better functional scores Better satisfaction rating Hardware related complications (9 px's)











- Epidemiology
  - Anterior: Most common
  - Posterior:
    - » May be unrecognized due to absence of obvious deformity
    - » Uncommon, 10%,
    - » May occur in Electrocutions
      & Seizures
  - Inferior (Luxatio Erecta): Rare, hyperabduction injury
- Clinical Evaluation
  - Examine Axillary nerve (deltoid function, no sensation over lateral shoulder)
  - Examine Musculocutaneous nerve (biceps function and anterolateral forearm sensation)







- Radiographic Evaluation
  - True AP shoulder
  - Axillary Lateral
  - Scapular Y
  - Stryker Notch View (Bony Bankart)





- Anterior Dislocation Recurrence Rate
  - Age 20: 80-92%
  - Age 30: 60%
  - > Age 40: 10-15%
- Look for Concomitant Injuries
  - Bony: Bankart, Hill-Sachs Lesion, Glenoid Fracture, Greater Tuberosity Fracture
  - Soft Tissue: Subscapularis Tear, Rotator Cuff Tear (older pts with dislocation)
  - Vascular: Axillary artery injury (older pts with atherosclerosis)
  - Nerve: Axillary nerve, Brachial plexus





- Anterior Dislocation
  - Traumatic

# Atraumatic

- (Congenital Laxity)
- Acquired (Repeated Microtrauma)





- Posterior Dislocation
  - Adduction/Flexion/IR at time of injury
  - Electrocution and Seizures cause overpull of subscapularis and latissimus dorsi
  - Reduce with traction and gentle anterior translation





- Inferior Dislocations
  Luxatio Erecta
  - Hyperabduction injury
  - Arm presents in a flexed posture
  - High rate of nerve and vascular injury
  - Reduce with in-line traction and gentle adduction





- Treatment
  - Nonoperative treatment
    » Closed reduction should be performed after adequate clinical evaluation and appropriate sedation
  - Reduction Techniques:
    » Traction/countertraction
    » Hippocratic technique
    » Stimson technique
    » Milch Technique
    » Scapular manipulation





#### Postreduction

- Post reduction films are a must to confirm the position of the humeral head
- Pain control
- Immobilization for 7-10 days then begin progressive ROM
- Operative Indications
  - Irreducible shoulder (soft tissue interposition)
  - Displaced greater tuberosity fractures
  - Glenoid rim fractures bigger than 5 mm
  - Elective repair for younger patients









- Epidemiology
  - Most common fracture of the humerus
  - Higher incidence in the elderly, thought to be related to osteoporosis
  - Females 2:1 greater incidence than males
- Mechanism of Injury
  - Most commonly a fall onto an outstretched arm from standing height
  - Younger patient typically present after high energy trauma such as MVA







- Clinical Evaluation
  - Patients typically present with arm held close to chest by contralateral hand
  - Pain and crepitus elicited on palpation
  - Careful neuro exam focusing on Axillary Nerve
- Radiographs
  - May need Shoulder focused and Full Humerus views







- Neer Classification
  - Four parts
    - » Greater and lesser tuberosities,
    - » Humeral shaft
    - » Humeral head
  - A part is displaced if >1 cm displacement or >45 degrees of angulation is seen

#### THE UNIVERSITY OF CHICAGO MEDICINE AT THE FOREFRONT OF MEDICINE

# **Proximal Humerus Fractures**

- Treatment
  - Minimally displaced fractures- Sling immobilization, early motion
  - Two-part fractures-
    - » Anatomic neck fractures likely require ORIF. High incidence of osteonecrosis
    - » Surgical neck fractures that are minimally displaced can be treated conservatively.
       Displacement usually requires ORIF
  - Three-part fractures
    - » Due to opposing muscle forces, these are unstable so closed treatment is difficult.
    - » Displaced fx  $\rightarrow$  ORIF

#### – Four-part fractures

- » Displaced or unstable → ORIF or hemiarthroplasty
- » High rate of Avascular Necrosis (13-34%)













- Mechanism of Injury
  - Direct trauma MVA
  - Indirect trauma fall on an outstretched hand
  - Fracture pattern depends on stress applied
    - » Compressive- proximal or distal humerus
    - » Bending- transverse shaft
    - » Torsional- spiral shaft
    - » Torsion and bendingoblique with a butterfly fragment







- Clinical evaluation
  - History and PE
  - Presentation: Pain,
    Swelling, Deformity,
    Limitation of Motion
  - Neurovascular evaluation-Radial Nerve





- Radiographic evaluation
  - AP and lateral views of the humerus
  - Traction radiographs for hard to classify secondary to severe displacement or a lot of comminution







- Holstein-Lewis Fractures
  - Distal 1/3 fractures
  - May entrap or lacerate radial nerve as the fracture passes through the intermuscular septum





#### Holstein-Lewis fracture.

Reproduced by permission from A Holstein and GB Lewis, *Journal of Bone and Joint Surgery* 45A:1382, 1963.



- Conservative Treatment
  - Establish union with acceptable alignment
  - >90% of humeral shaft fractures heal with nonsurgical management
  - Acceptable alignment
    » 20 45 degrees of anterior angulation, 30 degrees of varus angulation
    - 3 5 cm of shortening
  - May use coaptation splint, functional brace or hanging arm cast
  - Periodic follow up xrays to monitor alignment





- Treatment
  - Operative Treatment
    - » Indications
      - inadequate reduction
      - nonunion,
      - associated injuries
      - open fractures,
      - segmental fractures,
      - associated vascular
      - nerve injuries
    - » Implants used
      - Plates and screws
      - Intramedullary nails
      - External fixators



### Elbow Fracture/Dislocations







- Epidemiology
  - 11% 28% of injuries to the elbow
  - Posterior dislocations most common
  - Highest incidence in the young 10-20 years and usually sports injuries
- Mechanism of injury
  - Fall on outstretched hand or elbow resulting in force to unlock the olecranon from the trochlea
  - Posterior dislocation following hyperextension, valgus stress, arm abduction, and forearm supination
  - Anterior dislocation from direct force to the posterior forearm with elbow flexed



(Redrawn from O'Driscoll, S. W., Morrey, B. F., and Korinek, S., and An, K. N.: Elbow subluxation and dislocation: A spectrum of instability. Clin. Orthop. Relat. Res. 280:186, 1992.)



- Clinical Evaluation
  - Patients typically present guarding the injured extremity
  - Usually has gross deformity and swelling
  - Careful NV exam in important and should be done prior to radiographs or manipulation
  - Repeat after reduction
- Radiographic Evaluation
  - AP and lateral elbow films should be obtained both pre and post reduction
  - Careful examination for associated fractures



в



- Associated injuries
  - Radial head fx (5-11%)
  - Treatment
    - » Type I- Conservative
    - » Type II/III- Attempt ORIF radial head replacement







A suffix m is used if a medial collateral ligament injury is suspected or proven, but this has questionable impact on elbow stability. A capital M is used if there is an impact on stability, enough to warrant treatment. For lateral ligament injuries, I and L is used respectively. The same is done to document associated fractures to the ulna (U, u) or humerus (H, h). The suffix P is used to indicate that some sort of procedure was performed (Fig. 24-7); x for excision and F for ORIF.



- Associated injuries
  - Coronoid process fractures (5-10%)





- Associated injuries
  - Medial or lateral epicondylar fx (12-34%)



С



# **Elbow Fracture/Dislocations**

- Treatment
  - Posterior Dislocation
    - » Closed reduction under sedation
    - » Reduction should be performed with the elbow flexed while providing distal traction
    - » Post reduction management includes a posterior splint with the elbow at 90 degrees
       » Open reduction for severe soft
    - » Open reduction for severe soft tissue injuries or bony entrapment
  - Anterior Dislocation
    - » Closed reduction under sedation
    - » Distal traction to the flexed forearm followed by dorsally direct pressure on the volar forearm with anterior pressure on the humerus



## **Forearm Fractures**







- Epidemiology
  - Highest ratio of open to closed than any other fracture except the tibia
  - More common in males than females, most likely secondary mva, contact sports, altercations, and falls
- Mechanism of Injury
  - Commonly associated with direct trauma, missile projectiles, bending or torsion force





#### Clinical Evaluation

- Patients come in with gross deformity pain, swelling, and loss of function at the hand/wrist
- Evaluate radial, median, ulnar nerve functions
- Evaluate radial, ulnar nerve pulses
- Tense compartments, unrelenting pain, and pain with passive flexion/extension of digits → suspicion for compartment syndrome
- Radiographic Evaluation
  - AP and lateral radiographs of the forearm
  - Always evaluate the joint above and below





# **Forearm Fractures**

- Ulna Fractures
  - These include nightstick and Monteggia fractures
  - Monteggia denotes a fracture of the proximal ulna with an associated radial head dislocation



Π





III

IV



# **Forearm Fractures**

- Radial Diaphysis Fractures
  - Fractures of the proximal two-thirds can be considered truly isolated
  - Galeazzi fracture distal radius fracture with distal radioulnar joint disruption
  - A reverse Galeazzi -fracture of the distal ulna with disruption of radioulnar joint
- Mechanism
  - Usually by direct or indirect trauma, such as fall onto outstretched hand
  - Galeazzi fractures -from direct trauma to the wrist or fall onto outstretched hand with pronation
  - Reverse Galeazzi results from fall with hand in supination





# • Treatment

- Nondisplaced Fractures
  - » May be treated with long arm cast
  - » Will require frequent follow up with xrays
- Displaced Fractures
  - » Treatment of choice: ORIF with plates and screws







- Epidemiology
  - Most common fracture of the upper extremity
  - Common in younger and older patients
  - Result of direct trauma such as fall on out stretched hand
  - Increasing incidence due to aging population
- Mechanism of Injury
  - Most commonly a fall on an outstretched extremity with the wrist in dorsiflexion
  - High energy injuries may result in significantly displaced, highly unstable fractures







- Clinical Evaluation
  - Gross deformity of the wrist with variable displacement of the hand in relation to the wrist
  - Typically swollen with painful ROM
  - Ipsilateral shoulder and elbow must be examined
  - NV exam -median nerve for acute carpal tunnel compression syndrome





- Radiographic Evaluation
- 3 view of the wrist including AP, Lat, and Oblique





- Eponyms
  - Colles Fracture
    - » Combination of intra and extra articular fractures of the distal radius with dorsal angulation (apex volar), dorsal displacement, radial shift, and radial shortenting
    - » Most common distal radius fracture caused by fall on outstretched hand
  - Smith Fracture (Reverse Colles)
    - » Fracture with volar angulation (ápex dorsal) from a fall on a flexed wrist
  - Barton Fracture
    - » Fracture with dorsal or volar rim displaced with the hand and carpus
  - Radial Styloid Fracture (Chauffeur Fracture)
    - » Avulsion fracture with extrinsic ligaments attached to the fragment
    - » Mechanism of injury is compression of the scaphoid against the styloid



- Treatment
  - Displaced fractures require an *attempt* at reduction.
    - » Hematoma block-10ccs of lidocaine or a mix of lidocaine and marcaine in the fracture site
    - » Apply traction to wrist in fingertraps with a traction weight
    - » Reproduce the fracture mechanism and reduce the fracture
    - » Place in sugar tong splint or a bivalved cast





- Operative Management
  - » For the treatment of intraarticular, unstable, malreduced fractures
  - » Open fractures must go to the surgery for I&D and fixation



Quar ald waman with an intra articular unstabl



- Physical Exam Findings
  - Swelling
  - Limited Range of Motion
  - Tenderness over anatomic snuffbox
  - Pain on axial loading of the thumb
- Radiographic Evaluation
  - PA wrist view
  - PA wrist with clenched fist
  - Lateral
  - Radial oblique
  - Ulnar Oblique
- \*\*Xrays may be negative initially and may need to be repeated in 1- 2 weeks to demostrate fracture
- \*\*MRI, CT, Technetium scan and Ultrasound may be used to diagnose occult fractures



### **Scaphoid Fractures**



- 50% 80% of carpal injuries
- Anatomic Considerations
  - 80% covered with articular cartilage
  - 70% 80% of blood supplied by scaphoid branches of the radial artery
  - Blood supply is retrograde (i.e. flow from distal to proximal direction)
- Mecahnism of Injury
  - Fall on outstretched hand (FOOSH)



#### **Scaphoid Fractures**





From Herbert TJ: The Fractured Scaphoid, St Louis, Quality Medical Publishing, 1990

# **Scaphoid Fractures**



| TYPE OF FRACTURE                                    | TREATMENT                                                                                                                                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stable Fractures, Nondisplaced                      |                                                                                                                                                                         |
| Tubercle fracture                                   | Short arm cast for 6 to 8 weeks                                                                                                                                         |
| Distal third fracture/incomplete fracture           | Short arm cast for 6 to 8 week                                                                                                                                          |
| Waist fracture                                      | Long arm thumb spica cast for 6 weeks, short                                                                                                                            |
|                                                     | arm cast for 6 weeks or until CT confirmed<br>healing, especially for Pediatric patients,<br>Sedentary or low-demand patients,<br>Preference for nonoperative treatment |
| Waist fracture                                      | Percutaneous or open internal fixation, especially<br>for Active, young, manual worker, Athlete, high-<br>demand occupation<br>Preference for early range of motion     |
| Proximal pole fracture, nondisplaced                | Percutaneous or open internal fixation                                                                                                                                  |
| Unstable Fractures                                  | Dorsal percutaneous/open screw fixation                                                                                                                                 |
| Displacement >1 mm                                  |                                                                                                                                                                         |
| Lateral intrascaphoid angle >35°                    |                                                                                                                                                                         |
| Bone loss or comminution                            |                                                                                                                                                                         |
| Perilunate fracture-dislocation                     |                                                                                                                                                                         |
| Dorsal intercalated segmental instability alignment |                                                                                                                                                                         |









# THANK YOU

jangeles@bsd.uchicago.edu